7. INFINITE ABELIAN
GROUPS

§7.1. Examples of Infinite Abelian

Groups
Many of the groups which arise in various parts of
mathematics are abelian. That is, they satisfy the
commutative law: xy = yx.
If we’re working 1n a totally abelian environment it
Is usual to use additive notation: x +y. The reason for this
g W™ s that while multiplication of

. Vvarious mathematical objects
(matrices, functions etc.) is
non-commutative,  addition
invariably commutes. So by
using additive notation the
commutativity seems perfectly

- ;,’ natural.
In additive notation we

use the symbol O to represent the

identity element. In a particular example it might be the

number 0O, the zero matrix O, or the zero vector 0, but in

an abstract setting we just use the symbol 0. And the
inverse of an element x is written additively as —x.

Powers become multiples in additive notation.

And if n is the smallest positive integer such that nx =0

we say that x has order n. If no such n exists we say
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that x has infinite order. In the group Z, @ Z there are
elements of order 2 and elements of infinite order.

In a previous chapter
we studied finitely generated
abelian groups and we
proved that they are direct
sums of cyclic groups. But
the more interesting abelian
groups are the ones that are

not just infinite, but are INFINITE

infinitely generated. Some
are direct sums of cyclic GROUPRP
groups (with infinitely many
direct summands) but many
others have a more complicated structure, including some
very familiar examples.

Many of these can be found within the complex
number field, either as groups under addition or under
multiplication. Under addition we have the group C of all
complex numbers. It has many interesting subgroups,
such as the group R (of real numbers), Q (of rational
numbers) and Z (integers), plus many, many more. Other
examples occur as quotients of these, most notably the
group Q/Z.

Under multiplication we must exclude zero. We
have the group C* of all non-zero complex numbers, R*
(non-zero real numbers), R* (positive reals), Q* (non-zero

*
w
X

»%

* g
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rationals) and Q" (positive rationals). Of course the non-
zero integers do not form a group!

Some more exotic examples can be constructed as
groups of sequences, where the terms are drawn from a
collection of groups. This construction is called the
unrestricted direct product.

If Gi, G, ... is an infinite sequence of abelian
groups (written additively) we define @ZG, to be the set
of all infinite sequences (g1, 92, ...) with g, € G, for each
n.

Addition is component-wise with:

(91, Jo, ) + (hl, h,, ) = (91 + hy, g2+ h,, )
where the additions being performed in the respective Gp.
We could take all the G, to be the same group, for
example:

Lo ®Ly® ...
or we could make them different, for example:
Ly®@ZLy2 DLy ...
Note that in the first example every element has finite
order. But in the second example, even though the
summands are all finite, there are elements of infinite
order suchas (1, 1, ...).

§7.2. The Torsion Subgroup

A periodic (or torsion) group is one where every
element has finite order. At the other extreme we have
the torsion-free groups where only 0 has finite order.
The set of elements of finite order in the abelian group G
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is denoted by ©G and is known as the torsion subgroup
of G. (The following theorem shows that it’s indeed a
subgroup.) So G is periodic if tG = G and torsion-free if
G =0, meaning {0}. A group that is neither, such as

Z, ® Z, is called mixed.

Theorem 1: (1) tG is a subgroup of G
(2) G/7G is torsion-free.
Proof: (1) Clearly 0 has finite order and if ng = 0 then
n(—g) =0. Itremains, for
the first part, to show
that G is closed under
addition.

If g, h € ©G the for some

m, n € Z*, mg = 0 and nh Tormion

=0. Sincemn(g+h)=0,g+h e 1G.

(2) Suppose g + G is an element of finite order in G/1G.
Then for somen € Z°,

n(g + tG) = tG. Thus ng € tG and so for some m € Z",
m(ng) = (mn)g = 0. Hence g € tG and so g + tG is the
zero coset tG.

Examples 1:

(1) @ and Z are torsion-free.

(2) Finite groups are periodic.

(3) R* the group of non-zero real numbers under
multiplication is a mixed group. Because we use
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multiplicative notation for this group, x has finite order if
and only if x" =1 for some positive integer n. Hence
tR#* = {£1}.

(4) The torsion subgroup of R/Z is Q/Z.

If G is finitely-generated, and so a direct sum of
cyclic groups, tG is the direct sum of those cyclic factors
that are finite. In such cases therefore tG is a direct
summand of G, meaning that G = tG @ H for some
subgroup H.

Example 2: If G = Zgo @ Zigo @ Z @ Z then
G = {(X, y, 0, 0)} =~ Zeo D Zi0o and
G=tG@®HwhereH={(0,0,x,y)}2Z ® Z.

The torsion subgroup is a direct summand in many
cases even when the group is not a direct sum of cyclic
groups.

Example 3: t1Q* = {#1} = Z, and Q* = t1Q* ® Q".
Note that Q* is torsion-free.

While it is very often the case that the torsion
subgroup is a direct summand there are cases where it is
not. Before we exhibit such an example we’ll define
another useful subgroup. Recall that if G is an abelian
group nG ={ng | g € G}.
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The prime subgroup is defined to be:
G =NpG,
with the intersection taken over all primes p.

Example 4: pZ =0and pQ = Q.

When it comes to an abelian group G that is written
multiplicatively we need to rewrite o G as NGP.

If G = R¥ the group of non-zero real numbers under
multiplication, then GP = G if p is an odd prime (all real
numbers have a p-th root if p is odd) but G? = R* and so
pR* = R*.

Theorem 2: LetG=Z, @ Z3s @ Zs @ Z7 D@ Z11 ®..., the
unrestricted direct sum of one copy of Z, for each prime
p. The elements of G are infinite sequences the form:
(X2, X3, Xs, ...) where each X, € Zp

then tG is not a direct summand of G.

Proof: Note that G is not periodic since, for example, (1,
1, 1, ...) has infinite order. In fact tG is the set of all (X,
X3, Xs, ...) Where only finitely many X,’s are non-zero.

Clearly oG =0. We shall show that @ (G/tG) = 0.
Letx=(1, 1, ...) and let p be a prime.
For all primes q # p there exists an integer X, such that pxq
= 1(mod qg). Define the missing x, to be 0 and let
Yo = (X2, X3, X5, X7, X11, ... ).
Then py, differs from x in just one position and so
p(yp + 1G) = x + 1G.
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It follows that x + tG is a non-zero element of o (G/tG).
But since G = 0, G/tG cannot be isomorphic to a
subgroup of G. This means that tG cannot be a direct
summand of G, for if G = 1G @ H then G/7G = H.

87.3. Divisible Groups

An abelian group G is divisible if nG =G foralln € Z".
The multiplicative version of divisibility is G" = G for all
n € Z*, meaning that every element has n’th roots for all
n.

Example 5: No finite abelian group is divisible. Among
the familiar infinite abelian groups, Q, R, C* and R* are
divisible but R*, Q* and Z are not. For example, —1 has
no square roots in R¥, 2 has no square roots in Q* and 3 is
not divisible by 2 in Z.

Theorem 3: A quotient of a divisible group is divisible.
Proof: Suppose G is divisibleand H < G. LetgH € G/H
and n € Z".

Since G is divisible

g =nh for some h € Hand hence g + H=n(h + H). Hence
G/H is divisible.

Example 6: Q/Z is divisible. This is our first example of
a periodic divisible group.

It’s periodic because, if g = m/n € Q, then nq € Z and so
n(q+17Z)="7.
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A subgroup of a divisible group needn’t be
divisible. For example Z is a subgroup of Q but, while Q
is divisible, Z is not. So the class of divisible groups is
closed under quotients, but not under subgroups. It is,
however, closed under sums.

Theorem 4: The sum of two divisible subgroups of an
abelian group is divisible.

Proof: Suppose H, K < G where H, K are divisible.
Letg=h+kwhereh e Hand k € K.

Letn e Z".

Then h =nyand k =nz forsomey € H, z € K.

Thus g =n(y + 2).

In a similar way we can show that the sum of any
collection of divisible subgroups is divisible. We define
the divisible subgroup of an abelian group G, to be the
sum of all the divisible subgroups of G and we denote it
by 86G. If 6G = {0} we say that G is reduced.

Example 7: SR* = R*. This is because, for every integer
n, every positive real has an n’th root while no negative
real has square roots in R*., Also 3Q* = {0} so Q" is
reduced.

| proved that tG is not always a direct summand of

G. What about 8G? The answer is a qualified “yes”. |
shall prove that for every abelian group G, oG is a direct
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summand, meaning that G = 6G @ H for some subgroup
H.

So what do | mean by saying that the answer is a
qualified “yes”. The reason is that the theorem depends
on something called Zorn’s Lemma. Now no-one has
ever proved that Zorn’s Lemma is true. So why are we
justified in assuming it? Well, no-one has ever proved it
false. So what?

Well, it has been proved that no-one can ever
prove that it is true and also it has been proved that no-
one can ever prove it to be false.

It is an undecidable statement. You are logically
free to assume it or deny it. Like the majority of
mathematicians | choose to assume it. Therefore | can
prove the statement about 8G always being a direct
summand.

This result takes us right down to the very
foundations of mathematics. We must now confront the
question ‘“how do we know that something in
mathematics is true?”

§7.4. Truth in Mathematics

The great thing about mathematics is that you
always know where you stand. Everything in
mathematics is either true or false. If it’s true, you know
it is true because you can prove it. It’s not like religion
where you have to believe something that you can’t prove.
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If only things were this simple. It’s true that
mathematics validates theorems by providing proofs, but
remember that to begin with we have to agree on the logic
that underlies it all. And even then, every statement in
mathematics depends on certain  fundamental
assumptions. You can’t prove something out of nothing.

Let’s start with logic. We take this for granted. We
assume that every statement is either true or false, and that
no statement can be both. But what is a statement? Clearly
questions or commands can’t be considered as statements.
Now we think we know what a statement is. It is a
sentence that asserts something.

However the sentence “This sentence is false”
appears to be a statement. Yet a moment’s thought will
reveal that if it is true it is false and if it’s false then it’s
true. So we have to rule it out from being a statement. But
on what grounds?

Perhaps we should rule it out on the grounds of
self-referentiality. It is saying something about itself. So
we should rule out self-referential statements.

But you can get two or more “statements”, none of
which refers to itself. Yet, taken together there may be
self-referentiality. So we have to rule out self-
referentiality, either direct or indirect.

But consider the following infinite list of
“statements”.
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1. ONE OF THE NEXT STATEMENTS IS FALSE
2. ONE OF THE NEXT STATEMENTS IS FALSE
3. ONE OF THE NEXT STATEMENTS IS FALSE
Here I’ve abbreviated them so that each can fit on
one line. What | mean is by each of these statements is
that at least one of the statements that follow it is FALSE.
There is certainly no self-referentiality here, either
direct or indirect. These appear to be identical copies of
the same statement, but since ‘the next statements’ refers
to an ever decreasing list they are not all equal. Each
statement says something about the following ones but
none, either directly or indirectly, say anything about
themselves.

Case | Statement 1 is TRUE: Then for some m > 1
statement m is FALSE. Now statement m being FALSE it
follows that statement n is TRUE for all n > m.

In particular statement n + 1 is TRUE. So for some
k>n+1, statement k is FALSE.

Butk >n+1>n>m.Hence, by what | said earlier,
statement k is TRUE. This is a contradiction. But don’t
panic. We still have Case II.

Case Il Statement 1 is FALSE:

Hence for all n > 1, statement n is TRUE.

In particular statement 2 is TRUE.

Hence for some m > 2, statement m is FALSE.
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Again this gives a contradiction!

This is an example of the pitfalls that are possible with
logic.

However we’re mathematicians, not logicians, and
so we’ll assume that we avoid such paradoxes as the one
above. Every proof in mathematics is finite, which avoids
the above sort of paradox, and if we avoid self-referential
statements we should be OK. But if a contradiction arises
in mathematics that we believe is not due to shonky logic,
then we are in real trouble!

Now a contradiction is something that cannot be
allowed in mathematics. In ordinary life we somehow
live with contradictions but in mathematics, if just a single
contradiction is allowed in one can prove everything.

Bertrand Russell was
once challenged about this
claim. “Assuming that 1 + 1 =
1 prove that you are the Pope,”
he was asked. Russell gave an
argument along the following
lines:

Suppose that 1 + 1 =1.

Now by definition, 1 +1 =2,

Therefore 1 = 2.

The Pope and | are two people.

Therefore the Pope and | are one person.

Therefore | am the Pope!
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So although we’re ignoring potential difficulties
with our logic there’s an even bigger problem with our
fundamental assumptions about sets. Set theory provides
a suitable foundation for mathematics. Numbers can be
defined as sets, and points can be defined as pairs of
numbers. In fact it’s possible to define every
mathematical concept as a set. The elements of these sets
will be sets, and so on. Don’t we have to have some actual
“things” to start with? Not really, it can all be created out
of nothing.

The empty set & is a thing that we can consider as
being the number 0. We can then define 1 as {0}, 2 as {0,
1}, 3 as {0, 1, 2} and so on. It might seem a very strange
way to define positive integers, but notice that the set that
defines the integer n does have n elements. It is possible
to define addition and multiplication of these ‘integers’
and to prove the standard facts about them.

It would take too long to describe how we can
define negative integers, rational numbers, real and
complex numbers. It can be done, and all these numbers
will be sets of sets of sets, ... all built up from the empty
set.

It all sounds very biblical. In the beginning was the
empty set. On the first day God created 1 as {0} etc. Or
perhaps this makes you think of the big bang in which the
universe begins with something very small.

It is possible to define functions of a complex
variable, infinite series, polygons — indeed everything that
can be talked about in mathematics can be considered as
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a set of sets of sets. And all theorems in mathematics can
be proved from these definitions.

This may not be the best way to learn mathematics.
Mathematical intuition is a very useful tool. But if you are
interested in whether it is all really true then you can fall
back on this very rigorous development.

In the nineteenth and early twentieth centuries
mathematicians were concerned with the foundations of
the subject, and philosophers were concerned with the
nature of truth. They developed mathematics on the basis
of set theory. There was basically only one axiom about
sets that needed to be used to create this mighty edifice.

Axiom of Extensionality: For every property P there is a
set that consists of all sets that have that property. In
symbols: {x | Px} is always a set. (Here Px means ‘x has
the property P’)

The empty set is a set because it’s {x | x # x}.
Here Px = ‘x # X’.

{a, b} is a set because it’s {x | x = a or x = b}.

We can define x* = {x, {x}} and hence we can define the
integers by considering n* as n + 1 (though addition and
multiplication would yet have to be defined).

In the early 1900s as the great philosopher Frege
was preparing the second volume of his book on the
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foundations of mathematics, building everything on the
basis of the axiom of extensionality. But just before it was
published, the noted philosopher Bertrand Russell wrote
to him pointing out the following paradox, now known as
Russell’s Paradox.

Russell’s Paradox:
LetS={x|x & x}.
Suppose S € S. Then S ¢ S, a contradiction.
Suppose S ¢ S. Then S € S, a contradiction.

The contradiction that arises from Russell’s
Paradox shows that the foundation which underpinned
Frege’s book was invalid. The book had to be withdrawn
from publication. Mathematics was in danger of
collapsing! A few mathematicians, those interested in the
foundations of mathematics, tried to prop it up. Most
mathematicians simply ignored the problem and just got
on with it.

The rescue came with replacing the one axiom by
a set of axioms that avoided the Russell Paradox. Several
axiom systems have been proposed, but they have all been
shown to be equivalent to all the others. One of the most
widely used sets of axioms is the Zermelo-Fraenkel
axioms. This allows {x | Px} to be a set only for certain
specified properties and these will avoid the property x ¢
X.

Now, in stating these axioms I choose to use capital
letters. When you first learnt about sets you may have
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used capital letters to denote sets and lower case letters to
denote elements. But this distinction is artificial. To do
things properly we have to acknowledge that in
mathematics all objects can be considered as sets. But
properties are not sets and therefore | will use the
CASTELLAR font to denote properties. So P is a
property.

Sets are nouns and properties are adjectives. We
tend to think that every adjective can be turned into a
noun. The adjective ‘beautiful’ can be made into the noun
phrase ‘beautiful people’ . But the thrust of the Russell
Paradox is that not every adjective can be turned into a
noun. There are properties that don’t correspond to sets.

Zermelo-Fraenkel (ZF) Axioms:
(1) 0={X| X = X}isaset.
(2) If A, B are sets then so is
{A,B}={X|X=Aor X=B}.

(B IfZisasetsoisuwZ={X|3IY[XeYandY e Z].

For example if Z={A, B, C}thenuZ=AuBuUC.
(4)IfSisasetthen S ={X|X c S}isaset.

s is the set of all subsets of s.
(5) If Sisasetand P isa property then {X € S| PX}isa
set. This may look like the single axiom that gave rise to
the Russell Paradox, but the difference is that the elements
have to belong to a set.
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If we try to create the Russell Paradox we get:
LetT={X eS| X ¢ X}.
Suppose T € T. Then T ¢ T, a contradiction.
Suppose T ¢ T.
Now if T e Sweget T ¢ T, a contradiction.
But all this shows isthat T ¢ S.

So far so good. We seem to have avoided Russell’s
Paradox. But so far all our sets will be finite. If our set
theory is going to be any good as a foundation for
mathematics we’d better allow some infinite sets.

(6) There’s a set that contains 0, and whenever it contains
N it contains N* = N U {N}.

Finally we assume:
(7) If Sisasetand F is a function, then F[S] is a set.

You’ve probably been taught that every function
can be considered as a set. The function f: R—R defined
by f(x) = x? can be though of as the set

{xy)IxyeRandy=x7}
But again there are things called generalised functions
and not all of these can be considered as a set of ordered
pairs. This is why | have written the function as F in
axiom 7.

Do you agree to accept these axioms? If so you can
proceed and develop most of what is called mathematics.
We’ve avoided the Russell Paradox, but might there not
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be a further paradox lurking out there that someone might
one day stumble across?

In technical language we’re asking “are the above
seven axioms consistent?” The answer is “we don’t
know”. Nobody has ever proved that they are consistent,
and by their fundamental nature, it seems unlikely that
anybody ever will. However we don’t know that a proof
of consistency is impossible. So another paradox might
one day emerge.

Does this sound unsatisfactory? Is mathematics
teetering on a precipice? Not really. If a further paradox
should ever arise, mathematicians won’t cut their throats,
or jump off tall buildings in despair. Most will simply
ignore the paradox, and those who are interested in the
foundations will simply modify the axioms to get around
the problem! Mathematicians have more faith in their
intuition than in the logical foundations that underpin the
subject.

In some ways mathematics can be likened to a
religious belief. At the end of the day mathematicians can
no more prove that their mathematics is true than a
believer can prove the existence of God. They just have
faith in their subject.

Of course the big difference is that there are almost
as many different religions as there are believers, whereas
by and large mathematics has a catholic unity. But that
may reflect more on the different types of knowledge that
mathematics and theology investigate.
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Now here’s where it gets interesting. A little while
ago | said that on the basis of these seven axioms we can
develop most of what we know as mathematics. There are
some theorems that require us to go a step further — to
assume a further axiom.

Axiom of Choice: Given a set of non-empty set of non-
empty sets, there exists a generalised function that
maps each of these sets to one of its elements.

Put more simply it says that if you have a set of
boxes, and none of them is empty, you can select one
object from each box. (The slight difference is that the
sets that are represented by the ‘boxes’ might overlap and
we are allowed to choose the same element many times.)

Example 7: Consider the following set of non-empty sets,
where S={A,B,C}y, A={1,3,7},B={2,4},and C =
{1, 2, 6, 7, 8}. The Axiom of Choice asserts that it is
possible to choose one element from each set and put
them together in a set. This amounts to setting up a
function

f.S> uS={1, 2, 3,4,6, 7, 8. An example of such a
function is f(A) =7,1(B) =4, f(C) = 2.

Another possibility is g(A) =1, g(B) =4, g(C) =1,

Such an axiom seems intuitively obvious. If you
have a collection of boxes, with at least one ball in each,
it’s certainly possible to choose one ball from each box.
Indeed the axiom of choice is both true and obvious if

123



there are only finitely many sets from which to choose.
But is it possible to make infinitely many choices, or even
uncountably many?

Even if one cannot prove the Axiom of Choice it
seems a harmless enough assumption to make. But be
warned, one of its consequences is highly non-intuitive.
One can prove, using the Axiom of Choice, that a solid
sphere can be cut up into a small number of pieces and
reassembled to form two complete solid spheres, each the
same size as the one you started with!

But before you say that this contradicts the
principle of conservation of volume remember that
volumes can’t be meaningfully assigned to every subset
of R3. The ‘pieces’ we’re talking about are not the sort
one could make with a sharp knife. They are highly
fragmented, like the ‘piece’ that consists of those points
whose coordinates are rational numbers.

We don’t know whether the Axiom of Choice is
true or false, but what has been shown is that no proof or
disproof is logically possible! In technical language it has
been shown that the Axiom of Choice is consistent with,
and independent of, the other seven axioms of set theory.

“Consistent with” means that if you accept the
Axiom of Choice and a paradox ever does arise, it would
have done so without the Axiom of Choice. “Don’t blame
me” it would say, pointing to the other axioms, “it must
be their fault™.
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“Independent of” means that the negation of the
Axiom of Choice is also consistent with the other seven
axioms.

Should one accept the Axiom of Choice? Does it
mean that there are two mathematical ‘sects’, those who
believe in the Axiom of Choice and those who deny it?
As far as | know there are no mathematical atheists (if that
is the right word — if there were such mathematicians we
would have to coin a word). There are mathematical
believers and mathematical agnostics. Oh, and as with
religious faith there is the majority of those who just
ignore the question. Believers in the Axiom of Choice are
happy to use it on aesthetic grounds. It makes for cleaner
sounding theorems. The Axiom of Choice agnostics bend
over backwards not to use it.

There are many other statements in set theory that
are undecidable. These have to be taken as additional
axioms, or rejected depending on personal taste.

So do we have as many varieties of mathematics as
there are religions or denominations? Possibly. But
there’s an enormous overlap between these alternative
mathematics. The fact that you’ve never encountered this
problem before is because all the mathematics you’ve
ever learnt is common to all these mathematicsl ‘sects’.
Indeed all the mathematical creeds must inevitably agree
on any fact involving a specific concrete mathematical
example. Essentially they only differ in the form in which
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their theorems are stated (and then only in a tiny minority
of theorems).

Under one assumption a theorem might need to be
stated in a very complicated way, while under the
alternative assumption it may be stated more cleanly. But
on the specific examples covered by those theorems they
must agree.

Rest assured that building is going to collapse
because the engineer believes, or doesn’t believe, in the
Axiom of Choice. In the end it comes down simply to
aesthetics! The version based on the Axiom of Choice is
usually nicer than that based on its denial.

87.5. Zorn’s Lemma

We shall be assuming the Axiom of Choice, but in
a form called Zorn’s Lemma. Zorn’s Lemma has been
proved to be equivalent to the Axiom of Choice. Each can
be used to prove the other. Zorn’s Lemma has to do with
‘partially ordered sets’.

| will drop back into the ‘upper case — lower case’
notation that we have been used to. And I won’t be using
fancy fonts for properties, relations and functions because
in what follows all of these can be thought of as sets. In
particular I will use the familiar notation xRy to denote
the fact that x has the relation R with y.

A partially ordered set is a set, S, on which there
iIs a relation R which satisfies the following three
properties:
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(1) Reflexive: xRx for all x € S;
(2) Anti-symmetric: xRy and yRx imply x = y;
(3) Transitive: xRy and yRz imply xRz.

The standard example is the natural < ordering on
the real numbers but a more important example is the
subset relation, —, among sets.

In fact we will use the familiar notation x <y even
if the relation has nothing to do with the size of real
numbers, and x <y will mean x <y and x =Y.

If <is apartial ordering onaset Sand x,y € S with
x <y, we’ll say that y is larger than x. A maximal
element one for which nothing in S is larger. A largest
element is one which is larger than every other element.
If there’s a largest element it’s clearly maximal and
there’s at most one largest element. On the other hand
there can be more than one maximal element, in which
case, there’s no largest.

Example 8: If S is the set of proper subgroups of Z then
pZ is maximal if and only if p is prime and so S has no
largest. This is because the subgroups of Z all have the
form nZ, and mZ < nZ if and only if n | m. But if S is now
the set of all subgroups of Z then Z itself is the (unique)
largest element of S.
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ZORN'S LEMON - BY NANSCLARK WWW.TOONDOO.COM

What is sour, Z““)s

yellow and ‘
equivalent

to the
Axiom of Choice? L

ExoN

A partially ordered set, S, is a chain if for every pair of
distinct elements of S one is larger than the other. A
subset, T, of a partially ordered set, S, has an upper
bound u if u is greater than every element of T. The upper
bound needn’t be an element of the subset, but if it is, it’s
its largest element.

Example 9: The real numbers, under the partial ordering
<, isachain. The subset Z doesn’t have any upper bounds
in Q. The open interval (0, 1) in R has no maximum
element but has many upper bounds, of which 1 is the
least upper bound.

Zorn’s Lemma: Every partially ordered set in which
every chain has an upper bound has a maximal
element.

An argument that makes Zorn’s Lemma plausible
runs along the following lines. “If an element isn’t
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maximal there’s a larger one. Either it is maximal or
there’s an element that’s even larger. Continuing in this
way we get an infinite chain which, by assumption, has
an upper bound. Either it is a maximal element or there’s
an element larger still. Then we start all over again.
Eventually we must reach a maximal element.”

If you feel that this argument falls short of the
rigour we’ve come to expect from a mathematical proof,
you’re right. In fact Zorn’s Lemma cannot be proved!
But nor can its negation! For it has been proved to be
consistent with, yet independent of, the other axioms of
set theory.

LJAF T 15 NOT A PROPER ...BUT A€CccsS. HENCE
IDEAL, THEN 1€ J. BY EACH CHAIN HAS AN N’

DEFINITION OF T, WE HAVE UPPER BOUND IN S, SO BY ZORN'S L...
16A FOR SOME AeC.
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§7.6. Divisible Subgroups are Direct

Summands

We now come to a
quite  deep  theorem.
Funnily enough the proof
has 39 steps. Remember
the proof of the fact that
groups of order 2p are
cyclic or  dihedral? ,
However don’t think that =
every deep proof in group theory consists of 39 steps!

This proof needs Zorn’s Lemma to prove it. It’s up
to you whether or not you’re prepared to accept Zorn’s
Lemma (which is really an axiom rather than a lemma) or
its equivalent, the Axiom of Choice. You are logically
free to reject it, but this is really a very nice theorem and
it would be a pity not to have it.

But is it really true? Well, consider the following
meta-logical argument. You’ll never encounter a specific
infinite abelian group where the divisible subgroup is not
a direct summand. Why not? Well the existence of such
a counter example would mean that the theorem is false
and as a consequence Zorn’s Lemma would be false. But
as | said earlier, it has been proved that Zorn’s Lemma
can never be proved false.

This “proof” of Zorn’s Lemma is not a proof in the
true sense of the word — at least not one that can be
derived from the seven basic axioms. But it’s good
enough for me!
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Theorem 7: A divisible subgroup of an abelian group is
a direct summand.
Proof: Let H be a divisible subgroup of the abelian
group G. We need to find a subgroup K that such that:

e Kisdisjoint fromH, ieH~ K= {0} and

e H+K=0GC.
We divide the proof into a number of parts, in which we
make a large number of definitions.

(A) CHOICE OF A, K

(1) Let A be the set of subgroups of G that are disjoint
from H.

(2) A is partially ordered by inclusion (that is, under the
partial order <).

(3) Every chain in A has an upper bound (namely the
union of all the subgroups in the chain).

(4) By Zorn’s Lemma there exists a maximal element
K e A. We shall prove that this is a suitable K. It’s clear
that K is disjoint from H so it remains to show that
H+K=0GC.

SUPPOSE THAT H + K is a proper subgroup of G.
What we want now is a contradiction.

(B) CHOICE OF Ky

(4) Choose x € G such that x ¢ H + K. (Possible
because of our assumption.)

(5) Let K =K + Zx.

(6) Therefore K is a proper subgroup of Kj.
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(7) Hence Ky ¢ A. (If it was then K is not
maximal.)

(8) Therefore Kj is not disjoint from H and so K;
M H contains a non-zero element.

(C) CHOICE OF g, ko, r, n, h, k
(9) Choose 0 #g € Ky n H.
(10) Hence g € H.
(11) Sog=ko + rxforsome ko € K, r € Z.
(12) Therefore rx=g—ko € H+ K.
(Asge Hand ko € K.)
(13) Let n be the smallest positive integer such
that nx € H + K.
(14) Hence n>2. (Remember that x ¢ H + K.)
(15) Letnx=h+kforh e H, k € K.

(D) CHOICE OF p, y, h1, u
(16) Let p be a prime divisor of n.
(This exists because n = 1.)
(17) Lety = (%j X, SO that py = nx.

(18) Let h; € H such that phy =h. (H is divisible.)
(19) Letu=y —h;.
(20) Thus pu=py—-phi=py—-h=nx-h=k.
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(E) DEFINITION OF K>
(21) Suppose that u € K.

(22) Hence y=(%]x=h1+UGH+K.

(Ash; e Hand u € K))
(23) This contradicts the minimality of n.
(24) Therefore u ¢ K.
(25) Let K; = K + Zu.
(26) Therefore K is a proper subgroup of Ko.
(27) Hence K3 is not disjoint from H, that is,
K2 m H contains a non-zero element.
(This is because K; is bigger than K and so
can’t be in A.)

(F) DEFINITION OF hy, ko, m
(28) Let 0 = h, e Ky H.
(29) Hence h; e K+ Zu. (Since h; € K3.)
(30) Therefore h, =k, + mu for some k, € K and
somem € Z.

(G) p, m ARE COPRIME
(31) Suppose p | m.
(32) Therefore mu € K.
(Since pu=k € K))
(33) Hence h, e KN H=0,a
contradiction.
(Because ky, mu € K, h; € K))
(34) Thus p does not divide m.
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(35) It follows that 1 =am + bp for some
a,belZ.

(H) FINAL CONTRADICTION
(36) Therefore u = (am)u + (bp)u.
(37) Now amu =a(h, —k;) € H+ K and

pu=k e K.
(38) Hence u € H + K.
(39) So (%jx:y:u+yhleH+K,

a contradiction.

WARNING: In checking back to previous steps
remember that (22) and (23) as well as (32) and (33) are
based on further assumptions which are later shown to
be contradictions. For example you can’t use the
statement mu e K that appears in (32) in step (37) and
(38) to conclude that u € K. That’s why the statements
that are based on these further assumptions are indented.

Theorem 8: Every abelian group is a direct sum of a
divisible group and a reduced group.
Proof: By Theorems 7, G = 6G @ H for some H.
Since H=06H ® K for some K we have

G =6G @ 6H @ K.
But 8G @ 6H is a divisible group of G, yet dG is the
largest divisible subgroup of G. Hence 6G @ 6H = 8G
and so 6H = 0, which means that H is reduced.
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Recall that we showed that the torsion subgroup of
an infinite abelian group need not be a direct summand.
But for divisible groups the torsion subgroup is always a
direct summand.

Theorem 9: The torsion subgroup of a divisible group is
a direct summand.

Proof: Suppose G is divisible. Let g € tG and suppose
mg = 0. Let n € Z*. Then g = nh for some h € G. Since
(mn)h =0, hisinfactin tG. Thus tG is divisible and so
by Theorem 7 it’s a direct summand.

Theorem 10: A torsion-free divisible abelian group, G, is
a direct sum of copies of Q.

Proof: Suppose g € G and m/n € Q. Since G is divisible
there exists h € G such that nh = g. Since G is torsion-
free, h isunique (if nh’ =g we’d have n(h —h’) =0).
Define (m/n)g = mh. In this way we have made G into a
vector space over Q and so it is a direct sum of copies of

Q.

Actually we’ve cheated a bit here. We’re assuming
that every vector space over Q is a direct sum of copies of
Q. This is equivalent to the statement that every vector
space has a basis. Probably you have only ever seen this
proved for finite-dimensional vector spaces. It can be
proved for arbitrary vector spaces but only if we assume
Zorn’s Lemma (or equivalently, the Axiom of Choice).
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87.7. Sylow p-Subgroups

If p is a prime, a p-group is one where the order of
every element is a power of p. A p-group need not be
finite, but if it is, its order must be a power of p.

The Sylow p-subgroup of a periodic abelian group
G is the set of all elements whose order is a power of p.
We shall denote it by Syl,(G). (It’s easy to check that this
set is a subgroup.)

Theorem 11: Every periodic group is the direct sum of
its Sylow subgroups.

Proof: Let G be periodic and let g € G.

Suppose g has order n = p,M1 p,N2 ... pk where the p; are
distinct primes and each nj > 1.

For each i let gi = n/p'.

These g; are coprime and so, for some integers h;, we have
hlql + h2q2 + ...+ hkC]k =1.

For each i let gi = (higi)g.

Theng=g: + g, +... + gk and each gi e Sylp;(G).

§7.8. The Priifer Groups

The groups Q/Z and R/Z are two very important
examples of infinite abelian groups. The group R/Z
consists of real numbers modulo 1. There’s a
representative of each coset in the interval [0, 1) and it’s
usual to represent these cosets by their representative. We
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do a similar thing for Q/Z with the representatives
consisting of the rational numbers in this interval.

Example 10: In Q/Z, or R/C:

1 15 : : : :

5t3%5% (as in ordinary arithmetic)

3 2_5 . : : : : : :
2 T3=17 (since in ordinary arithmetic their sum is
17_.5

12- 112

w

S
%l

N
L)
I
o

—4 (since 4 < \/— <b).

Clearly every element of Q/Z has finite order. All
other elements of R/Z have infinite order.

The circle group, T, is the subgroup of C*
consisting of those complex numbers with modulus 1.
They’re represented in the complex plane by the points on
the unit circle. This group is isomorphic to R/Z by the
map f: R/Z — T defined by f(x) = e?™,

The image of the subgroup Q/Z under this
isomorphism is {e?™™" | m e Z, n € Z*} which is the set
of roots of unity. We’ll show later that R/Z is isomorphic
to the direct sum of one copy of Q/Z and uncountably
many copies of Q. Most of the interest in R/Z lies in its
Q/Z factor, so we’ll concentrate on that.
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For each prime p, the Prifer p-group is defined to
be the Sylow p-subgroup of Q/Z, that is, the set of all
elements of Q/Z whose order is a power of p. It’s denoted
by Zp=.

Example 11: Denoting each coset by its representative in
the interval [0, 1):

Zy» = {112, 1/4, 3/4, 1/8, 3/8, 5/8, 7/18, 1/16, ...}

Z3~ = {1/3, 2/3, 1/9, 2/9, 4/9, 5/9, 7/9, 8,9, 1/27, ...}

We’ll show later that Zp» needs infinitely many

generators. It has a presentation
<X1, X2, ... | pX1 = 0, PX2 = X1, PX3 = X2, ... >

The subgroup generated by a finite number of these
generators is a finite cyclic group, because each one
generates all preceding ones. What is remarkable about
these Prifer groups is that these finite subgroups are its
only proper subgroups. So here we have an infinite, non-
cyclic group whose proper subgroups are all finite and
cyclic.

Theorem 12: Every proper subgroup of Zp= is finite and
cyclic.

Proof: Let H be a subgroup of Zp=. If the elements of H
have a largest denominator, p", it’s generated by 1/p". If
there’s no largest denominator then for all n there’s an
element of H with denominator pN for some N > n in
which case H = Zp~.
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Theorem 13: A divisible p-group is a direct sum of copies
of pr.

Proof: Let G be a non-trivial divisible p-group. We first
show that G has a subgroup isomorphic to Zp=.

Let x; € G have order p. Choose X, so that px; = Xi.
Continuing in this way we construct a sequence Xi, Xz, ...
such that for each i > 1, pXij+1 = Xi.

The subgroup generated by these is isomorphic to Zp=,

with xr > r/p + Z,

This subgroup, being divisible, is a direct
summand. We could simply say “continue by induction”
but will the process ever terminate? What is needed is yet
another appeal to Zorn’s Lemma.

Let S denote the set of all subgroups isomorphic to
Zp~ and let T denote all the subsets X < S in which the
sum of the subgroups in X is a direct sum. T is partially
ordered by inclusion and every chain has an upper bound
(their union). By Zorn’s Lemma T has a maximal element
X. LetH Dbe the (direct) sum of the subgroups in X. Being
the direct sum of Prifer groups, H is divisible and so G =
H @ K for some K.

If K is non-trivial it contains a subgroup, P,
isomorphic to Zp=. But then X U {P} € T and is larger
than X, contradicting the maximality of X. Hence K=1
and G =H is adirect sum of copies of Zp~.
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Theorem 14: Every divisible group is isomorphic to a
direct sum of copies of Q and Zp= for various primes p.
Proof: Let G be divisible. Then G = tG @ H where H is
torsion-free. By Theorem 10, H is isomorphic to a direct
sum of copies of Q. By theorem 4, tG is a direct sum of
divisible p-groups. By theorem 13 each of these divisible
p-groups is a direct sum of copies of Zp=.
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EXERCISES FOR CHAPTER 7

EXERCISE 1: For each of the following determine

whether it is true or false.

(1) A periodic abelian group must be finite.

(2) Q*, the group of rational numbers under
multiplication, is torsion-free.

(3) If G is an infinite abelian group, tG is periodic.

(4) The non-trivial elements of G/tG have infinite order.

(5) Q/Z is periodic.

(6) If G is an infinite abelian group then G =tG @ H for

some torsion-free subgroup H.

(7) Q/Z is the direct sum of Prifer groups.

(8) Zorn’s Lemma cannot be proved true or false using

the standard axioms of set theory.

(9) If G is an infinite abelian group then G = dG @ H for

some subgroup H.

(10) R* the group of non-zero real numbers under

multiplication, is a divisible group.

EXERCISE 2: Find the orders of the following elements
in R/Z:

(a)%+Z; (b)%+z; (c)\%+z.

EXERCISE 3:
(a) What is the order of (1, 2, 3, 4, ...) in the unrestricted
direct sum

Lo DUz D7y ®ZsD ...
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(b) What is the order of (1, 2, 4, 8, ...) in the unrestricted
direct sum
Zp @ Uy ®Lg® Z1s® ...
(c) What is the order of (1, 2, 3, ..., 10, 0, 0, ...) in the
unrestricted direct sum
Lo@ L3P Us D@ L7 ®Z11 D ...

SOLUTIONS FOR CHAPTER 7
EXERCISE 1: (1) FALSE; (2) FALSE; (3) TRUE; (4)
TRUE; (5) TRUE; (6) FALSE;

(7) TRUE; (8) TRUE; (9) TRUE; (10) FALSE.
EXERCISE 2: (a) 4; (b) 34; (c) .

EXERCISE 3: (a) oo; (b) 2; (c) 10!.
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