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7. INFINITE ABELIAN 

GROUPS 
 

§7.1. Examples of Infinite Abelian 

Groups 
 Many of the groups which arise in various parts of 

mathematics are abelian.  That is, they satisfy the 

commutative law: xy = yx. 

 If we’re working in a totally abelian environment it 

is usual to use additive notation: x + y.  The reason for this 

is that while multiplication of 

various mathematical objects 

(matrices, functions etc.) is 

non-commutative, addition 

invariably commutes. So by 

using additive notation the 

commutativity seems perfectly 

natural. 

 In additive notation we 

use the symbol 0 to represent the 

identity element.  In a particular example it might be the 

number 0, the zero matrix O, or the zero vector 0, but in 

an abstract setting we just use the symbol 0. And the 

inverse of an element x is written additively as  −x. 

 Powers become multiples in additive notation.  

And if  n  is the smallest positive integer such that nx = 0 

we say that  x  has order  n. If no such n exists we say 
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that  x  has infinite order.  In the group ℤ2  ℤ there are 

elements of order 2 and elements of infinite order. 

 

 In a previous chapter 

we studied finitely generated 

abelian groups and we 

proved that they are direct 

sums of cyclic groups.  But 

the more interesting abelian 

groups are the ones that are 

not just infinite, but are 

infinitely generated.  Some 

are direct sums of cyclic 

groups (with infinitely many 

direct summands) but many 

others have a more complicated structure, including some 

very familiar examples. 

 Many of these can be found within the complex 

number field, either as groups under addition or under 

multiplication.  Under addition we have the group ℂ of all 

complex numbers.  It has many interesting subgroups, 

such as the group ℝ (of real numbers), ℚ (of rational 

numbers) and ℤ (integers), plus many, many more.  Other 

examples occur as quotients of these, most notably the 

group ℚ/ℤ. 

 Under multiplication we must exclude zero.  We 

have the group ℂ # of all non-zero complex numbers, ℝ# 

(non-zero real numbers), ℝ+ (positive reals), ℚ# (non-zero 
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rationals) and ℚ+ (positive rationals).  Of course the non-

zero integers do not form a group! 

 Some more exotic examples can be constructed as 

groups of sequences, where the terms are drawn from a 

collection of groups.  This construction is called the 

unrestricted direct product. 

 If G1, G2, ... is an infinite sequence of abelian 

groups (written additively) we define Gn to be the set 

of all infinite sequences (g1, g2, ...) with gn  Gn for each 

n. 

 

Addition is component-wise with: 

(g1, g2, ...) + (h1, h2, ...) = (g1 + h1, g2 + h2, ...) 

where the additions being performed in the respective Gn.  

We could take all the Gn to be the same group, for 

example: 

ℤp  ℤp  … 

or we could make them different, for example: 

ℤp  ℤp
2  ℤp

3  … 

 Note that in the first example every element has finite 

order.  But in the second example, even though the 

summands are all finite, there are elements of infinite 

order such as (1, 1, ...). 

 

§7.2. The Torsion Subgroup 
 A periodic (or torsion) group is one where every 

element has finite order.  At the other extreme we have 

the torsion-free groups where only 0 has finite order.  

The set of elements of finite order in the abelian group G 



 108 

is denoted by G and is known as the torsion subgroup 

of G.  (The following theorem shows that it’s indeed a 

subgroup.)   So G is periodic if G = G and torsion-free if 

G = 0, meaning {0}.  A group that is neither, such as 

ℤ2  ℤ, is called mixed. 

 

Theorem 1: (1) G is a subgroup of G 

                    (2) G/G is torsion-free. 

Proof: (1) Clearly 0 has finite order and if ng = 0 then 

n(−g) = 0.  It remains, for 

the first part, to show 

that G is closed under 

addition. 

 

If g, h  G the for some 

m, n  ℤ+, mg = 0 and nh 

= 0.  Since mn(g + h) = 0, g + h  G. 

(2) Suppose g + G is an element of finite order in G/G.  

Then for some n  ℤ+, 

n(g + G) = G.  Thus ng  G and so for some m  ℤ+, 

m(ng) = (mn)g = 0.  Hence g  G and so g + G is the 

zero coset G. 

 

Examples 1: 

(1) ℚ and ℤ are torsion-free. 

(2) Finite groups are periodic. 

(3) ℝ#, the group of non-zero real numbers under 

multiplication is a mixed group.  Because we use 
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multiplicative notation for this group, x has finite order if 

and only if  xn = 1  for some positive integer  n.  Hence 

tℝ# = {1}.   

(4) The torsion subgroup of  ℝ/ℤ is  ℚ/ℤ. 

 If G is finitely-generated, and so a direct sum of 

cyclic groups, G is the direct sum of those cyclic factors 

that are finite.  In such cases therefore G is a direct 

summand of G, meaning that G = G  H for some 

subgroup H. 

 

Example 2: If G = ℤ60  ℤ100  ℤ  ℤ then 

G = {(x, y, 0, 0)}  ℤ60  ℤ100 and 

G = G  H where H = {(0, 0, x, y)}  ℤ  ℤ. 

 

 The torsion subgroup is a direct summand in many 

cases even when the group is not a direct sum of cyclic 

groups. 

 

Example 3: ℚ# = {1}  ℤ2 and ℚ# = ℚ#  ℚ+. 

Note that ℚ+ is torsion-free. 

 

 While it is very often the case that the torsion 

subgroup is a direct summand there are cases where it is 

not.  Before we exhibit such an example we’ll define 

another useful subgroup.  Recall that if G is an abelian 

group nG = {ng | g  G}. 
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The prime subgroup is defined to be: 

G = pG, 

with the intersection taken over all primes p. 

 

Example 4: ℤ = 0 and ℚ = ℚ. 

When it comes to an abelian group G that is written 

multiplicatively we need to rewriteG as Gp. 

If G = ℝ#, the group of non-zero real numbers under 

multiplication, then Gp = G if p is an odd prime (all real 

numbers have a p-th root if p is odd) but G2 = ℝ+ and so 

ℝ# = ℝ+. 

 

Theorem 2: Let G = ℤ2  ℤ3  ℤ5  ℤ7  ℤ11 …,  the 

unrestricted direct sum of one copy of ℤp for each prime 

p.  The elements of G are infinite sequences the form: 

(x2, x3, x5, …) where each xp  ℤp 

then tG is not a direct summand of G. 

Proof:  Note that G is not periodic since, for example, (1, 

1, 1, …) has infinite order.  In fact tG is the set of all (x2, 

x3, x5, …) where only finitely many xp’s are non-zero. 

 

Clearly G = 0.  We shall show that (G/G)  0. 

Let x = (1, 1, ...) and let p be a prime. 

For all primes q  p there exists an integer xq such that pxq 

 1(mod q).  Define the missing xp to be 0 and let 

yp = (x2, x3, x5, x7, x11,  ... ). 

 Then pyp differs from x in just one position and so 

p(yp + G) = x + G. 
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It follows that x + G is a non-zero element of (G/tG).  

But since G = 0, G/G cannot be isomorphic to a 

subgroup of G.  This means that G cannot be a direct 

summand of G, for if G = G  H then G/G  H. 

 

§7.3. Divisible Groups 
An abelian group G is divisible if nG = G for all n  ℤ+.  

The multiplicative version of divisibility is Gn = G for all 

n  ℤ+, meaning that every element has n’th roots for all 

n.  

 

Example 5: No finite abelian group is divisible.  Among 

the familiar infinite abelian groups, ℚ, ℝ, ℂ# and ℝ+ are 

divisible but ℝ#, ℚ+ and ℤ are not.  For example, −1 has 

no square roots in ℝ#, 2 has no square roots in ℚ+ and 3 is 

not divisible by 2 in ℤ. 

 

Theorem 3: A quotient of a divisible group is divisible. 

Proof: Suppose G is divisible and H  G.  Let gH  G/H 

and n  ℤ+.  

Since G is divisible 

g = nh for some h  H and hence g + H = n(h + H).  Hence 

G/H is divisible. 

 

Example 6: ℚ/ℤ is divisible.  This is our first example of 

a periodic divisible group. 

It’s periodic because, if q = m/n  ℚ, then nq  ℤ and so 

n(q + ℤ) = ℤ. 
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 A subgroup of a divisible group needn’t be 

divisible.  For example ℤ is a subgroup of ℚ but, while ℚ 

is divisible, ℤ is not.  So the class of divisible groups is 

closed under quotients, but not under subgroups.  It is, 

however, closed under sums. 

 

Theorem 4: The sum of two divisible subgroups of an 

abelian group is divisible. 

Proof: Suppose H, K  G where H, K are divisible. 

Let g = h + k where h  H and k  K. 

Let n  ℤ+. 

Then h = ny and k = nz for some y  H, z  K. 

Thus g = n(y + z).   

 

 In a similar way we can show that the sum of any 

collection of divisible subgroups is divisible.  We define 

the divisible subgroup of an abelian group G, to be the 

sum of all the divisible subgroups of G and we denote it 

by G.  If G = {0} we say that G is reduced. 

 

Example 7: ℝ# = ℝ+.  This is because, for every integer 

n,  every positive real has an n’th root while no negative 

real has square roots in ℝ#.  Also ℚ# = {0} so ℚ# is 

reduced. 

 

 I proved that G is not always a direct summand of 

G.  What about G?  The answer is a qualified “yes”.  I 

shall prove that for every abelian group G, G is a direct 
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summand, meaning that G = G  H for some subgroup 

H. 

 So what do I mean by saying that the answer is a 

qualified “yes”.  The reason is that the theorem depends 

on something called Zorn’s Lemma.  Now no-one has 

ever proved that Zorn’s Lemma is true.  So why are we 

justified in assuming it?  Well, no-one has ever proved it 

false.  So what? 

Well, it has been proved that no-one can ever 

prove that it is true and also it has been proved that no-

one can ever prove it to be false. 

 

It is an undecidable statement.  You are logically 

free to assume it or deny it. Like the majority of 

mathematicians I choose to assume it. Therefore I can 

prove the statement about G always being a direct 

summand. 

 

This result takes us right down to the very 

foundations of mathematics.  We must now confront the 

question “how do we know that something in 

mathematics is true?” 

 

§7.4. Truth in Mathematics 
 The great thing about mathematics is that you 

always know where you stand. Everything in 

mathematics is either true or false.  If it’s true, you know 

it is true because you can prove it.  It’s not like religion 

where you have to believe something that you can’t prove. 
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 If only things were this simple. It’s true that 

mathematics validates theorems by providing proofs, but 

remember that to begin with we have to agree on the logic 

that underlies it all. And even then, every statement in 

mathematics depends on certain fundamental 

assumptions. You can’t prove something out of nothing. 

 

 Let’s start with logic. We take this for granted.  We 

assume that every statement is either true or false, and that 

no statement can be both. But what is a statement? Clearly 

questions or commands can’t be considered as statements. 

Now we think we know what a statement is. It is a 

sentence that asserts something. 

 However the sentence “This sentence is false” 

appears to be a statement. Yet a moment’s thought will 

reveal that if it is true it is false and if it’s false then it’s 

true. So we have to rule it out from being a statement.  But 

on what grounds? 

 Perhaps we should rule it out on the grounds of 

self-referentiality. It is saying something about itself. So 

we should rule out self-referential statements. 

 But you can get two or more “statements”, none of 

which refers to itself. Yet, taken together there may be 

self-referentiality. So we have to rule out self-

referentiality, either direct or indirect. 

 But consider the following infinite list of 

“statements”. 
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1. ONE OF THE NEXT STATEMENTS IS FALSE 

2. ONE OF THE NEXT STATEMENTS IS FALSE 

3. ONE OF THE NEXT STATEMENTS IS FALSE 

……………………………………………… 

 Here I’ve abbreviated them so that each can fit on 

one line. What I mean is by each of these statements is 

that at least one of the statements that follow it is FALSE. 

There is certainly no self-referentiality here, either 

direct or indirect. These appear to be identical copies of 

the same statement, but since ‘the next statements’ refers 

to an ever decreasing list they are not all equal. Each 

statement says something about the following ones but 

none, either directly or indirectly, say anything about 

themselves. 

 

Case I Statement 1 is TRUE: Then for some m > 1 

statement m is FALSE. Now statement m being FALSE it 

follows that statement n is TRUE for all n > m. 

 

In particular statement n + 1 is TRUE. So for some 

k > n + 1, statement k is FALSE. 

But k > n + 1 > n > m. Hence, by what I said earlier, 

statement k is TRUE. This is a contradiction. But don’t 

panic. We still have Case II. 

 

Case II Statement 1 is FALSE: 

Hence for all n > 1, statement n is TRUE. 

In particular statement 2 is TRUE. 

Hence for some m > 2, statement m is FALSE. 
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Again this gives a contradiction! 

 

This is an example of the pitfalls that are possible with 

logic. 

 However we’re mathematicians, not logicians, and 

so we’ll assume that we avoid such paradoxes as the one 

above. Every proof in mathematics is finite, which avoids 

the above sort of paradox, and if we avoid self-referential 

statements we should be OK. But if a contradiction arises 

in mathematics that we believe is not due to shonky logic, 

then we are in real trouble! 

 

 Now a contradiction is something that cannot be 

allowed in mathematics.  In ordinary life we somehow 

live with contradictions but in mathematics, if just a single 

contradiction is allowed in one can prove everything. 

 Bertrand Russell was 

once challenged about this 

claim.  “Assuming that 1 + 1 = 

1 prove that you are the Pope,” 

he was asked.  Russell gave an 

argument along the following 

lines: 

Suppose that 1 + 1 = 1. 

Now by definition, 1 + 1 = 2. 

Therefore 1 = 2. 

The Pope and I are two people. 

Therefore the Pope and I are one person. 

Therefore I am the Pope! 
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 So although we’re ignoring potential difficulties 

with our logic there’s an even bigger problem with our 

fundamental assumptions about sets. Set theory provides 

a suitable foundation for mathematics. Numbers can be 

defined as sets, and points can be defined as pairs of 

numbers. In fact it’s possible to define every 

mathematical concept as a set. The elements of these sets 

will be sets, and so on. Don’t we have to have some actual 

“things” to start with? Not really, it can all be created out 

of nothing. 

 The empty set  is a thing that we can consider as 

being the number 0. We can then define 1 as {0}, 2 as {0, 

1}, 3 as {0, 1, 2} and so on. It might seem a very strange 

way to define positive integers, but notice that the set that 

defines the integer n does have n elements.  It is possible 

to define addition and multiplication of these ‘integers’ 

and to prove the standard facts about them. 

 It would take too long to describe how we can 

define negative integers, rational numbers, real and 

complex numbers. It can be done, and all these numbers 

will be sets of sets of sets, … all built up from the empty 

set. 

It all sounds very biblical. In the beginning was the 

empty set.  On the first day God created 1 as {0} etc.  Or 

perhaps this makes you think of the big bang in which the 

universe begins with something very small. 

It is possible to define functions of a complex 

variable, infinite series, polygons – indeed everything that 

can be talked about in mathematics can be considered as 
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a set of sets of sets.  And all theorems in mathematics can 

be proved from these definitions. 

This may not be the best way to learn mathematics. 

Mathematical intuition is a very useful tool. But if you are 

interested in whether it is all really true then you can fall 

back on this very rigorous development.  

 

 In the nineteenth and early twentieth centuries 

mathematicians were concerned with the foundations of 

the subject, and philosophers were concerned with the 

nature of truth. They developed mathematics on the basis 

of set theory. There was basically only one axiom about 

sets that needed to be used to create this mighty edifice. 

 

Axiom of Extensionality: For every property P there is a 

set that consists of all sets that have that property.  In 

symbols: {x | Px} is always a set. (Here Px means ‘x has 

the property P’) 

 

The empty set is a set because it’s {x | x  x}. 

Here Px = ‘x  x’. 

 

{a, b} is a set because it’s {x | x = a or x = b}. 

  

We can define x+ = {x, {x}} and hence we can define the 

integers by considering n+ as n + 1 (though addition and 

multiplication would yet have to be defined). 

 In the early 1900s as the great philosopher Frege 

was preparing the second volume of his book on the 
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foundations of mathematics, building everything on the 

basis of the axiom of extensionality. But just before it was 

published, the noted philosopher Bertrand Russell wrote 

to him pointing out the following paradox, now known as 

Russell’s Paradox. 

 

Russell’s Paradox: 

Let S = {x | x  x}.  

Suppose S  S.  Then S  S, a contradiction. 

Suppose S  S.  Then S  S, a contradiction. 

 

 The contradiction that arises from Russell’s 

Paradox shows that the foundation which underpinned 

Frege’s book was invalid. The book had to be withdrawn 

from publication. Mathematics was in danger of 

collapsing! A few mathematicians, those interested in the 

foundations of mathematics, tried to prop it up.  Most 

mathematicians simply ignored the problem and just got 

on with it. 

The rescue came with replacing the one axiom by 

a set of axioms that avoided the Russell Paradox.  Several 

axiom systems have been proposed, but they have all been 

shown to be equivalent to all the others.  One of the most 

widely used sets of axioms is the Zermelo-Fraenkel 

axioms. This allows {x | Px} to be a set only for certain 

specified properties and these will avoid the property x  

x. 

 Now, in stating these axioms I choose to use capital 

letters. When you first learnt about sets you may have 
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used capital letters to denote sets and lower case letters to 

denote elements. But this distinction is artificial. To do 

things properly we have to acknowledge that in 

mathematics all objects can be considered as sets. But 

properties are not sets and therefore I will use the 

CASTELLAR font to denote properties. So P is a 

property. 

 Sets are nouns and properties are adjectives. We 

tend to think that every adjective can be turned into a 

noun. The adjective ‘beautiful’ can be made into the noun 

phrase ‘beautiful people’ . But the thrust of the Russell 

Paradox is that not every adjective can be turned into a 

noun. There are properties that don’t correspond to sets. 

 

Zermelo-Fraenkel (ZF) Axioms: 

(1) 0 = {X | X  X} is a set. 

(2) If A, B are sets then so is 

                                       {A, B} = {X | X = A or X = B}. 

(3) If Z is a set so is Z = {X | Y[X  Y and Y  Z]. 

     For example if Z = {A, B, C} then Z = A  B  C. 

(4) If S is a set then S = {X | X  S} is a set. 

     s is the set of all subsets of s. 

(5) If S is a set and P is a property then {X  S | PX} is a 

set. This may look like the single axiom that gave rise to 

the Russell Paradox, but the difference is that the elements 

have to belong to a set. 
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 If we try to create the Russell Paradox we get: 

Let T = {X  S | X  X}. 

Suppose T  T.  Then T  T, a contradiction. 

Suppose T  T. 

Now if T  S we get T  T, a contradiction. 

But all this shows is that T  S. 

 

 So far so good. We seem to have avoided Russell’s 

Paradox. But so far all our sets will be finite.  If our set 

theory is going to be any good as a foundation for 

mathematics we’d better allow some infinite sets. 

 

(6) There’s a set that contains 0, and whenever it contains 

N it contains N+ = N  {N}. 

 

Finally we assume: 

(7) If S is a set and F is a function, then F[S] is a set. 

 

 You’ve probably been taught that every function 

can be considered as a set. The function f: ℝ→ℝ defined 

by f(x) = x2 can be though of as the set 

{(x, y) | x, y  ℝ and y = x2} 

But again there are things called generalised functions 

and not all of these can be considered as a set of ordered 

pairs. This is why I have written the function as F in 

axiom 7. 

 Do you agree to accept these axioms?  If so you can 

proceed and develop most of what is called mathematics.  

We’ve avoided the Russell Paradox, but might there not 
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be a further paradox lurking out there that someone might 

one day stumble across? 

 In technical language we’re asking “are the above 

seven axioms consistent?” The answer is “we don’t 

know”. Nobody has ever proved that they are consistent, 

and by their fundamental nature, it seems unlikely that 

anybody ever will. However we don’t know that a proof 

of consistency is impossible. So another paradox might 

one day emerge. 

 

 Does this sound unsatisfactory? Is mathematics 

teetering on a precipice? Not really. If a further paradox 

should ever arise, mathematicians won’t cut their throats, 

or jump off tall buildings in despair. Most will simply 

ignore the paradox, and those who are interested in the 

foundations will simply modify the axioms to get around 

the problem!  Mathematicians have more faith in their 

intuition than in the logical foundations that underpin the 

subject. 

 In some ways mathematics can be likened to a 

religious belief. At the end of the day mathematicians can 

no more prove that their mathematics is true than a 

believer can prove the existence of God. They just have 

faith in their subject. 

 Of course the big difference is that there are almost 

as many different religions as there are believers, whereas 

by and large mathematics has a catholic unity.  But that 

may reflect more on the different types of knowledge that 

mathematics and theology investigate. 
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 Now here’s where it gets interesting. A little while 

ago I said that on the basis of these seven axioms we can 

develop most of what we know as mathematics. There are 

some theorems that require us to go a step further – to 

assume a further axiom. 

 

Axiom of Choice: Given a set of non-empty set of non-

empty sets, there exists a generalised function that 

maps each of these sets to one of its elements. 

 

 Put more simply it says that if you have a set of 

boxes, and none of them is empty, you can select one 

object from each box. (The slight difference is that the 

sets that are represented by the ‘boxes’ might overlap and 

we are allowed to choose the same element many times.) 

 

Example 7: Consider the following set of non-empty sets, 

where S = {A, B, C}, A = {1, 3, 7}, B = {2, 4}, and C = 

{1, 2, 6, 7, 8}.  The Axiom of Choice asserts that it is 

possible to choose one element from each set and put 

them together in a set.  This amounts to setting up a 

function 

f:S→ S = {1, 2, 3, 4, 6, 7, 8}.  An example of such a 

function is  f(A) = 7, f(B) = 4, f(C) = 2. 

Another possibility is g(A) = 1, g(B) = 4, g(C) = 1,  

 Such an axiom seems intuitively obvious.  If you 

have a collection of boxes, with at least one ball in each, 

it’s certainly possible to choose one ball from each box.  

Indeed the axiom of choice is both true and obvious if 
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there are only finitely many sets from which to choose.  

But is it possible to make infinitely many choices, or even 

uncountably many? 

 

 Even if one cannot prove the Axiom of Choice it 

seems a harmless enough assumption to make. But be 

warned, one of its consequences is highly non-intuitive.  

One can prove, using the Axiom of Choice, that a solid 

sphere can be cut up into a small number of pieces and 

reassembled to form two complete solid spheres, each the 

same size as the one you started with! 

But before you say that this contradicts the 

principle of conservation of volume remember that 

volumes can’t be meaningfully assigned to every subset 

of ℝ3. The ‘pieces’ we’re talking about are not the sort 

one could make with a sharp knife. They are highly 

fragmented, like the ‘piece’ that consists of those points 

whose coordinates are rational numbers. 

  

 We don’t know whether the Axiom of Choice is 

true or false, but what has been shown is that no proof or 

disproof is logically possible!  In technical language it has 

been shown that the Axiom of Choice is consistent with, 

and independent of, the other seven axioms of set theory. 

“Consistent with” means that if you accept the 

Axiom of Choice and a paradox ever does arise, it would 

have done so without the Axiom of Choice. “Don’t blame 

me” it would say, pointing to the other axioms, “it must 

be their fault”. 
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“Independent of” means that the negation of the 

Axiom of Choice is also consistent with the other seven 

axioms. 

 

 Should one accept the Axiom of Choice? Does it 

mean that there are two mathematical ‘sects’, those who 

believe in the Axiom of Choice and those who deny it? 

As far as I know there are no mathematical atheists (if that 

is the right word – if there were such mathematicians we 

would have to coin a word). There are mathematical 

believers and mathematical agnostics. Oh, and as with 

religious faith there is the majority of those who just 

ignore the question. Believers in the Axiom of Choice are 

happy to use it on aesthetic grounds. It makes for cleaner 

sounding theorems. The Axiom of Choice agnostics bend 

over backwards not to use it. 

 

There are many other statements in set theory that 

are undecidable. These have to be taken as additional 

axioms, or rejected depending on personal taste. 

So do we have as many varieties of mathematics as 

there are religions or denominations? Possibly. But 

there’s an enormous overlap between these alternative 

mathematics.  The fact that you’ve never encountered this 

problem before is because all the mathematics you’ve 

ever learnt is common to all these mathematicsl ‘sects’. 

Indeed all the mathematical creeds must inevitably agree 

on any fact involving a specific concrete mathematical 

example. Essentially they only differ in the form in which 
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their theorems are stated (and then only in a tiny minority 

of theorems). 

Under one assumption a theorem might need to be 

stated in a very complicated way, while under the 

alternative assumption it may be stated more cleanly.  But 

on the specific examples covered by those theorems they 

must agree. 

Rest assured that building is going to collapse 

because the engineer believes, or doesn’t believe, in the 

Axiom of Choice. In the end it comes down simply to 

aesthetics!  The version based on the Axiom of Choice is 

usually nicer than that based on its denial. 

 

§7.5. Zorn’s Lemma 
 We shall be assuming the Axiom of Choice, but in 

a form called Zorn’s Lemma. Zorn’s Lemma has been 

proved to be equivalent to the Axiom of Choice. Each can 

be used to prove the other. Zorn’s Lemma has to do with 

‘partially ordered sets’. 

 I will drop back into the ‘upper case – lower case’ 

notation that we have been used to. And I won’t be using 

fancy fonts for properties, relations and functions because 

in what follows all of these can be thought of as sets. In 

particular I will use the familiar notation xRy to denote 

the fact that x has the relation R with y. 

 

 A partially ordered set is a set, S, on which there 

is a relation R which satisfies the following three 

properties: 
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(1) Reflexive: xRx for all x  S; 

(2) Anti-symmetric: xRy and yRx imply x = y; 

(3) Transitive: xRy and yRz imply xRz. 

 

 The standard example is the natural  ordering on 

the real numbers but a more important example is the 

subset relation, , among sets. 

 In fact we will use the familiar notation x  y even 

if the relation has nothing to do with the size of real 

numbers, and x < y will mean x  y and x  y. 

 

 If  is a partial ordering on a set S and x, y  S with 

x < y, we’ll say that y is larger than x. A maximal 

element one for which nothing in S is larger. A largest 

element is one which is larger than every other element. 

If there’s a largest element it’s clearly maximal and 

there’s at most one largest element.  On the other hand 

there can be more than one maximal element, in which 

case, there’s no largest. 

 

Example 8:  If S is the set of proper subgroups of ℤ then 

pℤ is maximal if and only if p is prime and so S has no 

largest.  This is because the subgroups of ℤ all have the 

form nℤ, and mℤ  nℤ if and only if n | m. But if S is now 

the set of all subgroups of ℤ then ℤ itself is the (unique) 

largest element of S. 
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A partially ordered set, S, is a chain if for every pair of 

distinct elements of S one is larger than the other. A 

subset, T, of a partially ordered set, S, has an upper 

bound u if u is greater than every element of T. The upper 

bound needn’t be an element of the subset, but if it is, it’s 

its largest element. 

 

Example 9: The real numbers, under the partial ordering 

, is a chain.  The subset ℤ doesn’t have any upper bounds 

in ℚ. The open interval (0, 1) in ℝ has no maximum 

element but has many upper bounds, of which 1 is the 

least upper bound. 

 

Zorn’s Lemma: Every partially ordered set in which 

every chain has an upper bound has a maximal 

element. 

 An argument that makes Zorn’s Lemma plausible 

runs along the following lines.  “If an element isn’t 
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maximal there’s a larger one.  Either it is maximal or 

there’s an element that’s even larger.  Continuing in this 

way we get an infinite chain which, by assumption, has 

an upper bound. Either it is a maximal element or there’s 

an element larger still. Then we start all over again.  

Eventually we must reach a maximal element.” 

 If you feel that this argument falls short of the 

rigour we’ve come to expect from a mathematical proof, 

you’re right.  In fact Zorn’s Lemma cannot be proved!  

But nor can its negation!  For it has been proved to be 

consistent with, yet independent of, the other axioms of 

set theory. 
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§7.6. Divisible Subgroups are Direct 

Summands 
 We now come to a 

quite deep theorem.  

Funnily enough the proof 

has 39 steps. Remember 

the proof of the fact that 

groups of order 2p are 

cyclic or dihedral?  

However don’t think that 

every deep proof in group theory consists of 39 steps! 

This proof needs Zorn’s Lemma to prove it.  It’s up 

to you whether or not you’re prepared to accept Zorn’s 

Lemma (which is really an axiom rather than a lemma) or 

its equivalent, the Axiom of Choice.  You are logically 

free to reject it, but this is really a very nice theorem and 

it would be a pity not to have it. 

 But is it really true?  Well, consider the following 

meta-logical argument.  You’ll never encounter a specific 

infinite abelian group where the divisible subgroup is not 

a direct summand.  Why not?  Well the existence of such 

a counter example would mean that the theorem is false 

and as a consequence Zorn’s Lemma would be false.  But 

as I said earlier, it has been proved that Zorn’s Lemma 

can never be proved false. 

 This “proof” of Zorn’s Lemma is not a proof in the 

true sense of the word –  at least not one that can be 

derived from the seven basic axioms.  But it’s good 

enough for me! 



 131 

 Theorem 7: A divisible subgroup of an abelian group is 

a direct summand. 

Proof: Let H be a divisible subgroup of the abelian 

group G.  We need to find a subgroup K that such that: 

• K is disjoint from H,  ie H  K = {0} and 

• H + K = G. 

We divide the proof into a number of parts, in which we 

make a large number of definitions. 

 

(A) CHOICE OF , K 

(1) Let  be the set of subgroups of G that are disjoint 

from H. 

(2)  is partially ordered by inclusion (that is, under the 

partial order ). 

(3) Every chain in  has an upper bound (namely the 

union of all the subgroups in the chain). 

(4) By Zorn’s Lemma there exists a maximal element 

K  . We shall prove that this is a suitable K. It’s clear 

that K is disjoint from H so it remains to show that 

H + K = G. 

 

SUPPOSE THAT H + K is a proper subgroup of G.  

What we want now is a contradiction. 

 

(B) CHOICE OF K1 

(4) Choose x  G such that x  H + K.  (Possible 

because of our assumption.) 

(5) Let K1 = K + ℤx. 

(6) Therefore K is a proper subgroup of K1. 
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(7) Hence K1  .  (If it was then K is not 

maximal.) 

(8) Therefore  K1 is not disjoint from H and so K1 

 H contains a non-zero element. 

 

(C) CHOICE OF g, k0, r, n, h, k 

(9) Choose 0  g  K1  H. 

(10) Hence  g  H. 

(11) So g = k0 + rx for some k0  K, r  ℤ. 

(12) Therefore  rx = g − k0  H + K. 

       (As g  H and k0  K.)  

(13) Let n be the smallest positive integer such 

                                                  that nx  H + K. 

(14) Hence  n  2.  (Remember that x  H + K.) 

(15) Let nx = h + k for h  H, k  K. 

 

(D) CHOICE OF p, y, h1, u 

(16) Let p be a prime divisor of n. 

        (This exists because n  1.) 

(17) Let y = 






n

p
 x, so that py = nx. 

(18) Let h1  H such that ph1 = h.  (H is divisible.) 

(19) Let u = y − h1. 

(20) Thus  pu = py − ph1 = py − h = nx − h = k. 
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(E) DEFINITION OF K2 

(21) Suppose that u  K. 

  (22) Hence  y = 






n

p
 x = h1 + u  H + K. 

                             (As h1  H and u  K.) 

  (23) This contradicts the minimality of n.  

(24) Therefore  u  K. 

(25) Let K2 = K + ℤu. 

(26) Therefore K is a proper subgroup of K2. 

(27) Hence  K2 is not disjoint from H, that is, 

        K2  H contains a non-zero element. 

        (This is because K2 is bigger than K and so 

                                                       can’t be in .) 

 

(F) DEFINITION OF h2, k2, m 

(28) Let 0  h2  K2  H. 

(29) Hence  h2  K + ℤu.  (Since h2  K2.) 

(30) Therefore  h2 = k2 + mu for some k2  K and 

                                                          some m  ℤ. 

 

(G)  p, m ARE COPRIME 

(31) Suppose p | m. 

(32) Therefore mu  K. 

        (Since pu = k  K.) 

(33) Hence  h2  K  H = 0, a 

        contradiction. 

        (Because k2, mu  K, h2  K.) 

(34) Thus p does not divide m. 
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(35) It follows that  1 = am + bp for some 

                                                                a, b  ℤ. 

 

(H) FINAL CONTRADICTION 

(36) Therefore  u = (am)u + (bp)u. 

(37)  Now amu = a(h2 − k2)  H + K and 

                                                            pu = k  K. 

(38) Hence  u  H + K. 

(39) So  






n

p
 x = y = u + yh1  H + K, 

         a contradiction. 

 

WARNING: In checking back to previous steps 

remember that (22) and (23) as well as (32) and (33) are 

based on further assumptions which are later shown to 

be contradictions.  For example you can’t use the 

statement mu  K that appears in (32) in step (37) and 

(38) to conclude that u  K .  That’s why the statements 

that are based on these further assumptions are indented. 

 

Theorem 8: Every abelian group is a direct sum of a 

divisible group and a reduced group. 

Proof: By Theorems 7, G = G  H  for some  H. 

Since  H = H  K  for some  K  we have 

G = G  H  K. 

But  G  H  is a divisible group of G, yet  G  is the 

largest divisible subgroup of  G.  Hence  G  H  = G 

and so H = 0, which means that H  is reduced. 
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 Recall that we showed that the torsion subgroup of 

an infinite abelian group need not be a direct summand.  

But for divisible groups the torsion subgroup is always a 

direct summand. 

  

Theorem 9: The torsion subgroup of a divisible group is 

a direct summand. 

Proof: Suppose G is divisible. Let g  G  and suppose  

mg = 0. Let n  ℤ+. Then g = nh for some h  G.  Since  

(mn)h = 0,  h is in fact in  G. Thus G  is divisible and so 

by Theorem 7 it’s a direct summand. 

 

Theorem 10: A torsion-free divisible abelian group, G, is 

a direct sum of copies of ℚ. 

Proof: Suppose g  G and m/n  ℚ. Since G is divisible 

there exists  h  G  such that nh = g. Since G is torsion-

free, h is unique (if  nh = g  we’d have  n(h − h) = 0). 

Define (m/n)g = mh.  In this way we have made G into a 

vector space over ℚ and so it is a direct sum of copies of 

ℚ. 

 

 Actually we’ve cheated a bit here. We’re assuming 

that every vector space over ℚ is a direct sum of copies of 

ℚ. This is equivalent to the statement that every vector 

space has a basis. Probably you have only ever seen this 

proved for finite-dimensional vector spaces. It can be 

proved for arbitrary vector spaces but only if we assume 

Zorn’s Lemma (or equivalently, the Axiom of Choice). 
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§7.7. Sylow p-Subgroups 
 If p is a prime, a p-group is one where the order of 

every element is a power of p. A p-group need not be 

finite, but if it is, its order must be a power of p. 

 

 The Sylow p-subgroup of a periodic abelian group 

G is the set of all elements whose order is a power of p. 

We shall denote it by Sylp(G). (It’s easy to check that this 

set is a subgroup.) 

 

Theorem 11: Every periodic group is the direct sum of 

its Sylow subgroups. 

Proof: Let G be periodic and let g  G. 

Suppose g has order n = p1
n1 p2

n2 ... pknk where the pi are 

distinct primes and each ni  1. 

For each i let qi = n/pi. 

These qi are coprime and so, for some integers hi, we have 

h1q1 + h2q2 + ... + hkqk = 1. 

For each i let gi = (hiqi)g. 

Then g = g1 + g2 + ... + gk and each gi  Sylpi(G). 

 

§7.8. The Prüfer Groups 
 The groups ℚ/ℤ and ℝ/ℤ are two very important 

examples of infinite abelian groups. The group ℝ/ℤ 

consists of real numbers modulo 1. There’s a 

representative of each coset in the interval [0, 1) and it’s 

usual to represent these cosets by their representative.  We 
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do a similar thing for ℚ/ℤ with the representatives 

consisting of the rational numbers in this interval. 

 

Example 10:  In ℚ/ℤ, or ℝ/ℂ: 
1

2
 + 

1

3
 = 

5

6
  (as in ordinary arithmetic) 

3

4
 + 

2

3
 = 

5

12
  (since in ordinary arithmetic their sum is 

17

12
 = 1

5

12
  

7






3

7
 = 0. 

7






1

2
 = 

7

2
 − 4 (since 4  

7

2
  < 5). 

 

 Clearly every element of ℚ/ℤ has finite order. All 

other elements of ℝ/ℤ have infinite order. 

 

 The circle group, T, is the subgroup of ℂ# 

consisting of those complex numbers with modulus 1.  

They’re represented in the complex plane by the points on 

the unit circle. This group is isomorphic to ℝ/ℤ by the 

map f: ℝ/ℤ → T defined by f(x) = e2ix. 

 The image of the subgroup ℚ/ℤ under this 

isomorphism is {e2im/n | m  ℤ, n  ℤ+} which is the set 

of roots of unity. We’ll show later that ℝ/ℤ is isomorphic 

to the direct sum of one copy of ℚ/ℤ and uncountably 

many copies of ℚ. Most of the interest in ℝ/ℤ lies in its 

ℚ/ℤ factor, so we’ll concentrate on that. 
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 For each prime p, the Prüfer p-group is defined to 

be the Sylow p-subgroup of ℚ/ℤ, that is, the set of all 

elements of ℚ/ℤ whose order is a power of p. It’s denoted 

by ℤp. 

 

Example 11: Denoting each coset by its representative in 

the interval [0, 1): 

ℤ2 = {1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/18, 1/16, ...} 

ℤ3 = {1/3, 2/3, 1/9, 2/9, 4/9, 5/9, 7/9, 8,9, 1/27, ...} 

 

 We’ll show later that ℤp needs infinitely many 

generators.  It has a presentation 

x1, x2, ... | px1 = 0, px2 = x1, px3 = x2, ... . 

The subgroup generated by a finite number of these 

generators is a finite cyclic group, because each one 

generates all preceding ones. What is remarkable about 

these Prüfer groups is that these finite subgroups are its 

only proper subgroups. So here we have an infinite, non-

cyclic group whose proper subgroups are all finite and 

cyclic. 

 

Theorem 12: Every proper subgroup of ℤp is finite and 

cyclic. 

Proof: Let H be a subgroup of ℤp.  If the elements of H 

have a largest denominator, pn, it’s generated by 1/pn.  If 

there’s no largest denominator then for all n there’s an 

element of H with denominator pN for some N > n in 

which case H = ℤp. 
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Theorem 13: A divisible p-group is a direct sum of copies 

of ℤp. 

Proof: Let G be a non-trivial divisible p-group.  We first 

show that G has a subgroup isomorphic to ℤp. 

Let x1  G have order p. Choose x2 so that px2 = x1.  

Continuing in this way we construct a sequence  x1, x2, ... 

such that for each i  1, pxi+1 = xi. 

The subgroup generated by these is isomorphic to ℤp, 

with xr → r/p + ℤ. 

 This subgroup, being divisible, is a direct 

summand. We could simply say “continue by induction” 

but will the process ever terminate? What is needed is yet 

another appeal to Zorn’s Lemma. 

 Let S denote the set of all subgroups isomorphic to 

ℤp and let T denote all the subsets X  S in which the 

sum of the subgroups in X is a direct sum. T is partially 

ordered by inclusion and every chain has an upper bound 

(their union). By Zorn’s Lemma T has a maximal element 

X. Let H  be the (direct) sum of the subgroups in  X. Being 

the direct sum of Prüfer groups, H is divisible and so G = 

H  K for some K. 

If K is non-trivial it contains a subgroup, P, 

isomorphic to  ℤp. But then X  {P}  T and is larger 

than X, contradicting the maximality of  X.  Hence  K = 1  

and  G = H  is a direct sum of copies of ℤp. 
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Theorem 14: Every divisible group is isomorphic to a 

direct sum of copies of ℚ and ℤp for various primes p. 

Proof: Let G be divisible. Then G = G  H where H is 

torsion-free. By Theorem 10, H is isomorphic to a direct 

sum of copies of ℚ. By theorem 4,  G  is a direct sum of 

divisible p-groups. By theorem 13 each of these divisible 

p-groups is a direct sum of copies of ℤp. 
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EXERCISES FOR CHAPTER 7 
 

EXERCISE 1: For each of the following determine 

whether it is true or false. 

(1) A periodic abelian group must be finite. 

(2) ℚ#, the group of rational numbers under  

      multiplication, is torsion-free. 

(3) If G is an infinite abelian group, tG is periodic. 

(4) The non-trivial elements of G/tG have infinite order. 

(5) ℚ/ℤ is periodic. 

(6) If G is an infinite abelian group then G = tG  H for 

some torsion-free subgroup H. 

(7) ℚ/ℤ is the direct sum of Prüfer groups. 

(8) Zorn’s Lemma cannot be proved true or false using 

the standard axioms of set theory. 

(9) If G is an infinite abelian group then G = dG  H for 

some subgroup H. 

(10) ℝ#, the group of non-zero real numbers under 

multiplication, is a divisible group. 

 

EXERCISE 2: Find the orders of the following elements 

in ℝ/ℤ: 

(a) 
3

4
 + ℤ;    (b) 

22

68
 + ℤ;    (c) 

1

2
 + ℤ. 

 

EXERCISE 3: 

(a) What is the order of (1, 2, 3, 4, …) in the unrestricted 

direct sum 

ℤ2  ℤ3  ℤ4  ℤ5  … 



 142 

(b) What is the order of (1, 2, 4, 8, …) in the unrestricted 

direct sum 

ℤ2  ℤ4  ℤ8  ℤ16  … 

(c) What is the order of (1, 2, 3, …, 10, 0, 0, …) in the 

unrestricted direct sum 

ℤ2  ℤ3  ℤ5  ℤ7  ℤ11  … 

 

SOLUTIONS FOR CHAPTER 7 
 

EXERCISE 1: (1) FALSE; (2) FALSE; (3) TRUE; (4) 

TRUE; (5) TRUE; (6) FALSE; 

(7) TRUE; (8) TRUE; (9) TRUE; (10) FALSE. 

 

EXERCISE 2: (a) 4; (b) 34; (c) . 

 

EXERCISE 3: (a) ; (b) 2; (c) 10!. 

 


